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Metal-free synthesis of alkynyl imines using an
oxophosphonium-mediated approach at ambient temperatures
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Abstract

A metal-free approach was developed for the mild synthesis of N-aryl a-alkynyl imines from corresponding amide precursors for the
first time. The electronic effects of substrates and the reaction mechanisms were investigated and discussed. This newly developed oxo-
phosphonium-triggered one-pot multiple-step method presents the advantages of mild conditions, ease of operation and satisfactory
efficiency.
� 2008 Elsevier Ltd. All rights reserved.
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Quinolines have been found as substructures in many
natural products, drugs and drug leads, as well as func-
tional polymers.1 Some recent syntheses of quinolines have
been reported using the multiple-step protocols,2,3 amongst
which N-aryl a-alkynyl imines were frequently regarded as
the suitable precursors (Scheme 1, Eq. 1).4–7 Due to the
weak acidity of a-proton of imines, most known methods
for the preparation of N-aryl a-alkynyl imines require the
use of reactive and sensitive organometallic reagents. Diffi-
cult operations and high costs make these methods less
impractical in the laboratory, especially for those cases to
raise materials in a larger scale. Therefore, development
of milder, more efficient and easily operative procedures
for N-aryl a-alkynyl imines is of great value.

Very recently, we developed a generally efficient strategy
for the total syntheses of camptothecin-family alkaloids.8

In this mild cascade reaction, an oxophosphonium salt
(Hendrickson reagent)9 was used to the convert the stable
aniline amides to corresponding imidates (part of the active
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diene) at ambient temperatures and triggered the intramo-
lecular Diels–Alder reaction and the following cascade
sequence. The above mechanism suggests that an intermo-
lecular version of this reaction might provide a new mild
access to the quinolines via N-aryl a-alkynyl imines with-
out using those sensitive organometallic reagents (Scheme
1, Eq. 2). The Use of a metal-free method in preparation
of a-alkynyl imines and/or quinolines will broaden the
applications of these compounds as intermediates in
organic synthesis, especially in those sensitive to the
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organometallic reagents. To best of our knowledge, no
metal-free approach has been reported yet for the synthesis
of N-aryl a-alkynyl imines.

Hendrickson reagent can be conveniently prepared
in situ by simply mixing Tf2O and 2 equiv of Ph3PO in
dichloromethane as an oxophosphonium salt at room tem-
perature. Due to the high affinity of phosphorous to oxy-
gen atom, conversion of an amide to the corresponding
imidate can be achieved in high efficiency by using Hend-
rickson reagent.8,9 To screen the reaction with alkynes in
the presence of Hendrickson reagent, N-(4-methoxy-
phenyl)benzamide (1a) was chosen as the amide substrate.
Three mono- or di-substituted aliphatic alkynes 2a–c were
examined as the first batch of reactants. These reactions
were performed and carried out in dichloromethane at
0 �C to room temperature (Table 1). The results showed
two reactions (entries 2 and 3) worked, producing quino-
line derivative and N-aryl a-alkynyl imine (entry 2) or its
equivalence (entry 3) in similar yields. This mentions that
at least two competitive pathways exist in this reaction
(Fig. 1). Quinolines were generated by a pathway of inter-
molecular Diels–Alder reaction followed by eliminative
aromatization, and the other cationic process provided
N-aryl a-alkynyl imine or its equivalence (which is not able
to cyclize under the same conditions). However, its reaction
Table 1
Reactions of amide 1a with aliphatic alkynes 2a–c

N
H

O
MeO

N-(4-methoxyphenyl)benzamide

+ R1 R2

Tf2O
Ph3P

0 oC
then

(1a)

2a-c

Entry 2 Product(s)

1 2a: R1 = H; R2 = TMS
MeO

2 2b: R1 = H; R2 = n-C5H11

MeO

3a 2c: R1 = R2 = n-C3H7

MeO
nC3H
with trimethylsilyl acetylene afforded trace amount of N-
aryl a-alkynyl imines 3a only (entry 1). Electronic property
of an alkyne is thus mentioned to be critical for this multi-
ple-step reaction by stabilizing the active intermediates in
the reaction process.

As mentioned above, choose of proper acetylenes is crit-
ical to improve the yields of N-aryl a-alkynyl imines. The-
oretical inference suggests commercially available
bis(trimethylsilyl)acetylene would be a better electron
donor, in which the TMS group can play not only as a
good electron-donating group, but also a ‘super proton’10

for the final elimination to generate acetylene 3a (Fig. 2).
Using similar conditions, the reaction of N-(4-methoxy-
phenyl)benzamide (1a) with bis(trimethylsilyl)acetylene
gave N-aryl a-alkynyl imine 3a in 70–72% yield. Attempts
to use more equivalents of Hendrickson reagent could not
improve the chemical yields.

To explore the generality of this reaction, a variety of
aniline amides were then examined and the results are
shown in Table 2. The substrates bearing electron-donating
groups (entries 1, 2, 4 and 6) afforded the corresponding
products in better yields, and those having electron-with-
drawing groups (entries 3, 5, 10, 11 and 12) gave relatively
lower yields. Due to the strong acidity of TfOH generated
in this reaction, substrate 1m (bearing an N,N-dimethyl
Ph
P

O

Ph
Ph

P
Ph

Ph
Ph

Hendrickson reagent

 (1.5 eq.)
O (3 eq.)

DCM

, 10 min
 rt for 6 h

Products
OTf OTf

Yields (%)

N

TMS

3a
Trace

N

nC5H11

4a

+
MeO

N
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4b

43 (4a)
32 (4b)

5

+
MeO

N

nC3H7

4c

nC3H7

N

nC3H7

OTf
7

42 (5)
37 (4c)
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Fig. 1. Proposed mechanism for the competitive pathways.

N
H

O
MeO

1a

[Ph3P+OP+Ph3](OTf)2
N

O
MeO PPh3

TMS TMS

N

O
MeO PPh3

-Ph3POTMS TMS

N

MeO TMS
TMS

OTf

OTf
-TMSOTf

N

MeO

TMS

OTf

3a

A

B

Fig. 2. Proposed mechanism for the reaction of N-(4-methoxyphenyl)benzamide (1a) with bis(trimethylsilyl)-acetylene.
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group) was in situ converted to the ammonium salt, an
electron-withdrawing group, and gave a lower yield (entry
13). In addition, the vinylogous amide (1n, entry 14) men-
tions that aryl ring B is not an essential for this reaction,
though only a medium yield of product 3n was achieved.

Improvement of competitive products distribution
(favoured to N-aryl a-alkynyl imine) was verified by the
reaction of 1b with 1-trimethylsilyl-1-octyne (2e). In this
reaction, the final cationic elimination of TMSOTf was
devised in replace of HOTf (Scheme 2). Under similar con-
ditions for the previous reaction with 1-heptyne (Table 1,
entry 2), both N-aryl a-alkynyl imine (3o, 53%, cationic
pathway) and quinoline derivative (4o, 24%, Diels–Alder
pathway) were afforded. However, N-aryl a-alkynyl imine
3o was improved to be a major product after such a treat-
ment by enhancing the driving force of final cationic elim-
ination of TMSOTf.

Reactions of amide 1a with phenylacetylene (2f) and 1-
phenyl-2-trimethylsilylacetylene (2g) were also examined
under the above conditions (Scheme 3). Similar to the pre-
vious observations, both N-aryl a-alkynyl imine (3p, 35%)
and quinoline derivative (4p, 28%) were produced in the
reaction of amide 1a and acetylene 2f. When a TMS
group-bearing acetylene 2g was used, the reaction afforded
a quinoline derivative (4q, 33%) and a lower yield of imine
(3p, 13%), as well as other unidentified byproducts. The
later results might be due to the spatial crowd in corre-
sponding intermediate (B, Fig. 2). Such a situation dramati-
cally decreased the rate to form a planar intermediate
structure which was required for the next elimination of



Table 2
Generality examination of amide substrates

N
H

O
R1 TMS TMS

Tf2O (1.5 eq.)
Ph3PO (3 eq.)

DCM
0 oC, 10 min
then rt for 6 h

1a-1m
(1 mmol)

R2
N

R1

R2

TMS

2d
(1.2 mmol)

3a-3m

A

B

N
H

O
MeO

N

MeO

TMS

1n 3n

Entry Reactants Products Yields (%)

1 1a: R1 = OMe; R2 = H 3a 71
2a 1b: R1 = OMe; R2 = OMe 3b 86
3 1c: R1 = OMe; R2 = Cl 3c 44
4 1d: R1 = OMe; R2 = tBu 3d 81
5 1e: R1 = OMe; R2 = NO2 3e 28
6 1f: R1 = Me; R2 = OMe 3f 80
7 1g: R1 = Cl; R2 = OMe 3g 69
8 1h: R1 = H; R2 = OMe 3h 65
9 1i: R1 = F; R2 = OMe 3i 59

10 1j: R1 = NO2; R2 = OMe 3j 50
11 1k: R1 = CN; R2 = OMe 3k 57
12 1l: R1 = CO2Me; R2 = OMe 3l 65
13 1m: R1 = NMe2; R2 = OMe 3m 50
14 1n 3n 45

a Product 3b was confirmed by the X-ray single crystal diffraction
method.
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TMSOTf, and finally gave the imine product 3p in a lower
yield.

In summary, a novel metal-free synthesis of N-aryl a-
alkynyl imines11 from stable amide precursors is developed.
The electronic effects of substrates and the reaction mech-
anisms were investigated and discussed. This oxophospho-
nium-triggered one-pot multiple-step method presents
advantages of mild conditions, ease of operation, satisfac-
tory efficiency. Further, the improvement of this reaction
and the transformation of N-aryl a-alkynyl imines to the
functional quinolines are underway in our laboratory.
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